Analysis 1 | Convergence Tests II - Finding the Limits (1.9)
In this post we will continue to investigate more theorems of convergence tests. Tests D’Alembert Ratio Test $\textbf{\small Theorem 1.17.:} $ Let $\sum_{n=1}^{\infty} a_n$ be positive series and let $l = \lim_{n\rightarrow \infty}\frac{a_{n+1}}{a_n}$. Then, series converges if $l < 1$, series diverges if $l > 1$, and gives no information if $l = 1$ or limit fails to exist. $\textbf{\small Proof:} $ Let $l < 1$. We want to prove that $\sum_{n=1}^{\infty} a_n$ converges. Let us write what we know from assumption. Choose $\varepsilon > 0$ and $\forall n > N$ and $0 < (l + \varepsilon) < 1$: ...