Differential Equations 1 | First Order Differential Equations (1.3)
Consider the initial value problem (IVP) $$ \begin{aligned} x=x(t), x_0 = x(t_0) \text{ for } t \geq t_0 \end{aligned} $$ $$ \begin{aligned} x=x(t), x_0 = x(t_0) \text{ for } t \geq t_0 \end{aligned} $$ where $$ \begin{aligned} (x, t) : \vert t - t_0\vert < a, \vert x - x_0\vert < b \end{aligned} $$ $$ \begin{aligned} (x, t) : \vert t - t_0\vert < a, \vert x - x_0\vert < b \end{aligned} $$ this means that the pairs $(x, t)$ satisfies the inequalities $\vert t - t_0\vert < a, \vert x - x_0\vert < b$ for $a,b > 0$. For the sake of understanding we can say $t_0$ is initial time and $x_0$ is initial position. Therefore $(x_0, t_0)$ or $(x(t_0), t_0)$ is initial condition. In this case $t_0$ is independent variable and $x$ is dependent variable (depends on $t$). ...